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A theory of the macrokinetics of electrode reactions in gas-liquid electrodes has been developed for the 

case of electrochemical reactions occurring at the electrodes of an hydrogen-oxygen fuel cell or of a 
water electrolyser. This theory takes account of the convective flows arising at electrodes of this type 

due to electrochemical reactions, which exert strong influences on transport phenomena. 
The concepts developed have been used for calculations of the large-scale macrokinetics in hydrogen- 

oxygen fuel cells and electrolysers with capillary membranes, which include mass transfer processes in 

the electrodes, the capillary membrane and in the boundary gas layers adjoining the electrode, as well as 

the flooding and drying of porous electrodes due to changes in the working conditions. Account is also 
taken of the self-regulation of the supply and removal of water vapour. 

List of symbols V = voltage, V 

x = co-ordinate, cm 
C .~_ 

e = 

e W = 

D = 

E = 

F = 

L = 

I = 

i ( x )  = 

J = 

K = 

k = 

1 = 

M = 
p = 

Q = 

R = 

T = 
t = 
L/ = 

73 = 

total concentration, mol cm -3 

solute concentration mol cm -3 

solvent concentration, tool cm -3 

effective diffusivity, cm 2 s -~ 

e.m.f., V 

Faraday constant, C mo1-1 

dpw/dc,  see Equation 6 
current density (total), A c m  -2 

current density at cross-section x, A c m  -2 
mass flux, tool cm -2 s -1 
permeability, cm 2 

rate constant, s -1 

electrode thickness, cm 
molecular weight, g tool -1 

gas-phase concentration, tool cm -3 

rate of reaction per unit volume of porous 
electrode, tool cm -3 s -1 

rate of evaporation per unit  volume, tool 
cm-3 s-1 

gas constant, erg tool -~ ~ -1 
temperature 
transference number 

gas filtration velocity, cm s -1 
liquid filtration velocity, cm s -a 

Greek 

= dimensionless water flux through 

membrane (scale I/F) 

13 = mass transfer coefficient, cm s -1 

7 = see Equation 64 

6 = electrode or membrane thickness, cm 

e = diffusion retardation factor in porous body 

0 = wetting angle 
/l --- dynamic viscosity, g cm -1 s -I 
u = stoichiometric coefficient (v > 0 for 

products and u < 0 for reactants) 
11 = pressure, gem -1 s -2 

I1 e ~ capillary pressure, gcm -1 s -2 

0 = density, gcm -3 

o = surface tension, g s -z 

X = t + Cw/e 

(b = functions, Equation 52 
= dimensionless potential (scale R T / F )  

= liquid content  

Subscripts  and superscripts 

g = gas reactant; gas phase 
1 = liquid phase (electrolyte) 
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w = solvent (water) 
+ = cation 

- anion 
0 = membrane 
1 = hydrogen electrode 
2 = oxygen electrode 

1. Introduction 

Most important electrochemical processes 
involving gaseous reactants or yielding gaseous 
products (for instance, current generation or 
electrolysis on porous electrodes) take place in 
porous media partially filled with electrolyte and 
partially with gas. 

Three major factors affecting the rates of these 
processes are: 

(1) kinetics of surface electrochemical reaction; 
(2) 'microscopic' transfer processes of  dissolved 

gases to metal/electrolyte interfaces and 
(3) 'macroscopic', or large-scale transfer 

processes of gas and liquid reactants in the porous 
electrodes. 

While much attention has been paid to the first 
two problems [ 1 ],  the essential features of large- 
scale transfer processes were overlooked until 
recently [2-5],  and the particular importance of 
convective flows in gas-liquid electrodes was slow 
to be recognized. 

In this paper we shall concentrate on problems 
of 'macroscopic' transport in gas-liquid electrodes. 
Both microscopic stages will be accounted for by 
an effective kinetic function influenced both by 
surface kinetics and diffusion of gas reactants 
from gas-filled pores to the active surface. In 
Section 2, we give a qualitative analysis of the 
various factors influencing the transfer processes 
in a two-phase medium. The results will be applied 
in the subsequent sections to calculate the per- 
formance of the hydrogen-oxygen fuel cell with 
a capillary membrane. 

2. Mass transfer in a gas-liquid porous electrode 

2.1. Transfer equations in liquid and gas phases 

Consider a system consisting of a binary electro- 
lyte (for example, alkali solution) and a binary 
gas mixture containing solvent (water) vapour and 
an active component (hydrogen or oxygen) which 

upon dissolution enters into electrochemical 
reaction either with the anion (hydroxyl) 
producing water or, on the contrary, with water 
producing the anion. (The components given in 
brackets correspond to the hydrogen-oxygen fuel 
cell in an alkaline solution; however, the equations 
given below are equally valid for other processes 
with the same scheme; absorption of gas can be 
replaced by its electrochemical evolution as in the 
case of water electrolysis). 

Suppose that both gas- and liquid-filled pores 
are linked into connected networks spreading 
throughout the porous body, so that two con- 
tinuous fluid phases coexist within the pore space. 
Suppose also that all macroscopic variables do not 
change appreciably over distances comparable with 
the inhomogeneity scale of a porous body. Then 
macroscopic quasihomogeneous equations with 
effective transport coefficients can be written for 
both fluid phases. 

Ion transfer equations in the electrolyte 
accounting for molecular diffusion, convection, 
migration and electrochemical reaction are of the 
forms 

j+ =- _ D  + dc d~b 
~ x + V C - - D + c - - ~  = 0 (1) 

d J - _  d ( _  de d~b) 
dx dx D- = - dx  + vc + D - c - - ~  v_ a .  ( 2 )  

Equations 1 and 2 take into account the electric 
neutrality condition so that they give both the 
concentration and the electrolyte potential. The 
Einstein relation D i = u i R T / F  between the 
mobility u i and the diffusion coefficient D i 
of the ith ion was also used to derive these 
equations. Of course, this relation is not quite 
correct for concentrated solutions*. But even then 
the transfer equations can be written in the forms 
(1) and (2) with additional concentration- 
dependent factors included in the migration terms. 
Since these equations include convective terms, it 
is more convenient to use concentrations rather 
than the activities even for concentrated solutions. 
More exact forms of transport equations would 
involve multicomponent diffusion coefficients 

*The Einstein relation for concentrated solutions has the 
form: D i = u i (1  + k)RT/Fz i, where k = d In fa/d in c and 
fa is the activity coefficient, z i is the charge of the ion i. 
For the sake of simplicity we assumed k = 0. 
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D ij which are never obtained by the usual measure- 
ments, so the use of the Fick law with the 
empirical concentration-dependent one-component 
diffusion coefficients D i appears to be the only 
practical choice. It should be further noticed that 
the effective diffusivities in Equations 1 and 2 are 
complicated quantities depending on the structure 
of the porous material and the fraction of the 
pores filled by electrolyte. These structural factors 
also influence the effective kinetic function 
Q(G c, pg). 

The choice of the flow rate in multicomponent 
concentrated solutions, is, in general, not unique 
and must correspond to the reference frame of the 
empirical diffusion coefficients. The solvent flow 
rate produced by its evolution or absorption 
during electrochemical reaction and evaporation- 
condensation processes, can be advantageously 
taken as the flow velocity. Such a choice is justi- 
fied by the fact that convective effects due to the 
transport of reacting ions are taken into account 
in the standard method of determining the effec- 
tive diffusion coefficients by measuring the 
electric conductivity [6]. Then the solvent balance 
gives the equation for the flow rate 

d(vcw) 
-- v w Q -  q. (3) 

dx 

The terms on the right-hand side of Equation 3 
express the change of the solvent flow Jw = v c w  
due to electrochemical reaction and evaporation. 
The concentration of solvent cw is connected with 
the solute concentration c and the solution density 
p by the relationship Cw = (p -- cMs)/Mw. 

The transfer equations in the gas phase take the 
forms dC 

upg -- D e = vgQ (4) 

d (  up ~ )  
w--Dg : q. (5) 

Due to the large gas-liquid interface area in a 
porous body, the processes of solvent vapor- 
ization and condensation proceed at a fast rate 
so that the distribution of solvent between two 
phases must be close to the equilibrium one. 
Therefore the transfer equations in the liquid and 
gas phases are conjugated by the relation between 
the vapour and electrolyte concentrations: 

Pw = f(c).  (6) 

So far we have obtained six equations with seven 
unknown variables: solute concentration c, 
potential ~, gas-phase concentrations pg and Pw, 
rate of evaporation q and velocities in both phases 
v and u. These equations include one more variable 
in an implicit form, namely, the fraction of pores 
filled by the electrolyte, or liquid content, co, 
which determines both the values of the effective 
diffusion coefficients and the rate of  the electro- 
chemical reaction (there is no explicit dependence 
of co in the equations since all fluxes are calculated 
for the total cross-section of the electrode). Two 
remaining variables, the pressure in the gas phase 
Fig = (pg + P w ) R T  and the liquid content co, 
which is directly related to the capillary pressure 
in the porous medium are found from the filtra- 
tion equations in the liquid and in the gas (Darcy 
equations): 

K1 dII1 
v - (7) 

;11 dx 

Kg dHg 
u - ( g )  

/~g dx 

Pressures in both phases are related by the con- 
dition of capillary equilibrium 

20 cos 0 
Fig - -  I I  1 = H e -- (9) 

r e  

where re is the meniscus radius at the interface. 
Hence, the value of IIc depends on the pore filling 
by electrolyte in a given cross-section of the 
electrode. In the simplest case, when the hysteresis 
during Idling of pores by the electrolyte can be 
neglected, co is expressed by the integral over the 
distribution function of pore radii ~ (r) 

(.o = ff (r) dr. 
r m i n  

As will be shown below, under certain con- 
ditions the system of equations used for calcula- 
tions can be considerably simplified. In particular, 
there is no need to consider the hydrodynamic 
filtration equations for ordinary electrochemical 
processes. 

2.2. Constant pore filling condition 

Convective flows are produced in both phases only 
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under the action of the current taken from or 
passing through the electrode. Using a given current 
density I (calculated for the total cross-section of 
the electrode) and total molar concentrations in 
both phases, Cg, Q,  we can evaluate characteristic 
liquid and gas velocities 

V~I/FC1 u~I /FCg.  (10) 

Taking into account Equation 10 we obtain from 
' Equations 7-9 the estimates for the pressure drops 
in both phases: 

I1 lag. II ~1 
AHg--~-g~-g ,  AHI FQ K," (11) 

If  the permeabilities of both phases Kg, K1 are 
of the same order of magnitude, the ratio of  the 
pressure drops in the gaseous and liquid phases is 
equal to AIIJAII,  = (t~Jpa)/(Cg/C1). Within an 
order of magnitude, this ratio is equal to the ratio 
of  the kinematic viscosities of both phases and, 
since u e "~ 10 -1 , Vl ~ 10 -z cm 2 s -1 , the pressure 
drop in the gas phase is higher than that in the 
liquid. 

Using Equations 7 and 9, we can estimate the 
maximum flow velocity in the liquid phase which 
could be produced in the electrode with thickness 
I under the action of capillary forces: 

K l a l  1 1 ) a r ~ a x O  (12) 
Vc -- #1 l "rm~n rmax Prmin/ 

Here we assume that the permeability is pro- 
portional to the squared radius of the large pores 
through which most of the liquid inflow proceeds, 
with the proportionality coefficient a. Assuming 
/'max = 10-s cm,/'rain = 10 -6 cm,/a = 10 -2 g 
cm -1 s -1 , a = 10 2 g s -z , a = 10 -2 (this corres- 
ponds to the usual Poiseuille flow in capillaries 
with correction for capillary tortuosity) and 
l = 10 -2 cm, we obtain ve = 1 cm s -1 . This value 
is much higher than the velocities which can be 
developed with usual currents. Assuming Q = 
5 x 10 -2 molcm -3 a n d / =  0.5 Acre -z in 
Equation 10, we obtain v = 10 -4 cm s -1 . Thus, 
even for such a high current density we have 
v ~ v c. Since v ,~ v~, the capillary pressure is 
practically constant throughout the electrode. If 
the distribution of pore radii is sufficiently wide, 
constancy of capillary pressure means, at the same 
time, constancy of pore filling by the electrolyte. 
The opposite limiting case v >> v c corresponds to 

the regime of non-uniform liquid content when 
one part of  the electrode is dried while another is 
flooded. Besides increased current density, this 
unfavourable regime may be also induced by use 
of fine-porous materials with low permeability or 
electrodes with narrow distributions of pore radii. 
On the contrary, the use of materials, containing 
pores of unequal widths, including wide pores 
which aid the liquid flow, promotes the uniform 
filling of the electrode by the electrolyte. 

When the inequality v >> v e holds, Equation 7 
can be dropped. Then the liquid content w is in- 
cluded in the system of equations as a parameter 
and, as it is constant throughout the electrode, can 
be found from integral relationships (see Section 4). 

With v ~ vc, gas pressure drop is not sufficient 
to shift appreciably the capillary equilibrium in a 
gas-liquid electrode, but it can still affect the 
transport of gaseous reactants. However, estimates 
based on Equation 12 show that in porous 
materials containing sufficiently wide pores with 
r ~> l0 -s cm operating out of the Knudsen dif- 
fusion region, AIIg is small compared with the 
total gas pressure. Under these conditions 
Equation 8 can be replaced by the equation 

Pw + P c  = Cg = const. (13) 

2.3. Constant concentration condition 

Electrochemical reaction induces concentration 
gradients in both phases; on the contrary, diffusion 
tends to minimize these gradients. I f  there were no 
mass exchange between gas and electrolyte, con- 
centration drops in both phases could be estimated 
a s  

Il II 
lAp,el ~ lapel ~FDg'  tAewl ~ IAcl 

(14) 
~,/~fc t ~D~. 
pg / c 1 DlC 

In the hydrogen electrode pg/c ~ 10 -3 , while 
De/D1 ~ l0 s , and thus the gas-phase concentration 
drop should be much less than the liquid-phase 
one. With the current density 10 -1 < I <  1 Acre -2 
and 1 ~ 10 -2 cm, considerable concentration 
gradients could be expected in the liquid electro- 
lyte, but the gas-phase concentration profde must 
be smoothed out due to intensive diffusion. Such 
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a discrepancy is in evident contradiction with the 
conditions of the solvent vaporization/conden- 
sation equilibrium. Moreover, in the hydrogen 
electrode even the signs of the concentration 
gradients imposed by diffusional fluxes in the 
gas and electrolyte are opposite. Which concen- 
tration distribution pattern will be actually 
realized, depends on the comparative efficiency 
of gas and liquid diffusion. Since the former is 
much more intensive, the uniform gas-phase 
composition cannot be influenced by the gradient 
of the solute concentration. On the contrary, the 
electrolyte composition will become more uniform 
due to the solvent evaporation in the low- 
concentration regions, vapour diffusion through 
the gas phase and condensation in the high- 
concentration regions. The vapour flux induced 
by the solute concentration gradient dc/dx equals 
Dg(Opw/Oc)(dc/dx), and if (Dg/D1)(3pw/3c) >> 1, 
the amount of vapour transferred is sufficient to 
smooth out the non-uniformity of the electrolyte 
composition. This inequality holds under the usual 
temperature and concentration conditions of fuel 
cell operations 90 < T <  100~ c ~ 10 moll -1 . 

In the oxygen electrode, due to the lower value 
of  the gas diffusivity, equalizing of  the electrolyte 
concentration by vapour transport is less effective, 
but even there, uniform electrolyte composition 
can be anticipated at current densities around 
10 -1 Acm -2 . Considerable concentration 
gradients can be created when current and liquid 
content are increased or temperature lowered. 
Numerical calculations confirm that concentration 
gradients in the electrodes are negligible at 
moderate current densities (see Section 4). The 
important role of transfer processes in the gas 
phase in gas-liquid porous electrodes was recently 
confirmed experimentally [7]. 

Under conditions of constant concentration the 
equations are appreciably simplified and can be 
solved analytically. This solution reveals a peculiar 
character of convective flows produced by the 
intensive transfer of solvent vapour in the gas 
phase. Since the diffusion flux in the liquid phase 
is negligible, Equation 1 takes the form 

v = D + --.de (15) 
dx 

Thus, the velocity of the electrolyte flow must be 
such as to compensate for the migrative flow of 

non-discharging ions. Substituting Equation 15 
into Equation 2 and neglecting the diffusive flux 
we obtain an equation for the potential: 

_. d2r 
(D + + O )C~x 2 = v_Q((~). (16) 

This is the usual equation in the macrokinetics of 
reactions in porous media. Boundary conditions 
for Equation 16 are defined by the current l a t  the 
polarized boundary x = l of the electrode and by 
the zero current condition d~b/dx = 0 at the 
opposite boundary, x = 0. Integrating Equation 16 
we obtain the current density i(x) in the cross- 
section x as a function of the potential ~ in the 
same cross-section: 

F(D + + D-)c de 
i(x) = --F J- - 

v_ dx 

I2c (D § + D-) 
= [ F ~,- f ;  Q(q~a)dr u2 

(17) 
Integrating once again we obtain (in an implicit 
form) the potential distribution across the 
electrode ~b(x) : 

c( l~  + D-)fO* Q(~b2 

(18) 

Assuming x = I in Equation 17 we obtain the 
potential at the polarized boundary ~o = r as a 
function of the current density I = i(l) = 
F(D § + D - ) e ( a C 4 d x ) x  = ~: 

FI2c(D+ + D- ) fG  j r2  
I = [ ~-- Jr Q(r (19) 

The potential ~* at the back face of the electrode, 
in Equations 17-19, is found by solving the trans- 
cendental equation 

[c(DYTD_)3r Q(~b,) d~b, d~b]. 

(20) 
For a fast reaction, when the characteristic time 
tr = c/Q(Oo) is far smaller than the characteristic 
time of diffusion td = l 2/(D+ + D_), the potential 
~* is close to the equilibrium value so that the 
reaction zone is localized at the polarized 
boundary (ohmic regime). For the opposite 
limiting case t r >> ta, q~* is dose to r and the 
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reaction proceeds uniformly over the whole 
thickness of the electrode (kinetic regime). 

As follows from Equations 15 and 17, the flow 
velocity in the liquid phase is directly related to 
the current density in the given cross-section: 

D+v_ 
v ( x )  - F(D+ + D--)c i (x) .  (21) 

The maximum flow velocity is observed at the 
polarized boundary x = I and is equal to 

D+v_ I 
- - -  ( 2 2 )  v( l )  F ( D  + + D - )  c" 

This value is somewhat different from the esti- 
mate of Equation 10 obtained without regard for 
the convective currents caused by the transfer of 
solvent in the gas phase. However, the values 
(Equations 10 and 22) are close to one another for 
concentrated alkaline solutions in fuel cells and in 
water electrolysis units (C1/c .~ 5, D+ /D - ~ 1/5). 
The electrolyte flow is always directed against the 
current in an anodic reaction (v_ < O) and parallel 
to the current in a cathodic reaction (v_ > 0). In 
hydrogen-oxygen fuel cells the electrolyte in the 
hydrogen electrode flows from the polarized 
boundary towards the back face while in the 
oxygen electrode the flow is in the opposite 
direction. Flow directions are reversed in the 
electrolyser. 

The equation for the flow velocity in the gas 
phase is obtained by summing up Equations 3-5 
taking due account of the constancy of pressure 
(Equation 13): 

dv du 
ew - ~  + Cg ~lx = (uS + vw)Q" (23) 

To solve this equation we have to impose the 
boundary conditions determining the flow of both 
the gas reagent and the solvent at the electrode 
boundary open for the gas. We shall assume that 
this boundary coincides with the back-face (non- 
polarized) boundary of the electrode x = 0: 

Jw(O) - (UPw - - D g d P w / d x )  + vcw = (a --  Vw)I/F, 

(24) 

Yg(O) = upg - - D g d p g / d x  = - -vgI /F .  (25) 

Here we have taken into account the fact that the 
gas reagent flux is determined by the reaction 
stoichiometry. The deviation of the solvent flux 

from the stoichiometric value - -VwI /F  is accounted 
for by the parameter a which equals the 
dimensionless (with the scale l / F )  outward solvent 
flux at the polarized boundary of the electrode. 
Summing up Equations 24 and 25, we obtain the 
boundary condition for the variable VCw + Cgu: 

(Yew + uCg)x = o = (o~ - -  v w --  vg)I /F.  (26) 

On integrating Equation 23 we obtain: 

vcw + u G  = - F  -1 { [ / -  i ( x ) ]  + Vw) - at}.  

(27) 
In particular, the velocities of gas flow at the 
polarized and back-face sides of the electrode by 
virtue of Equation 21 are equal to, 

u(O) = (I /FCg)(a --  vg --  Vw), 
(28) 

u(O = * + D -  c 

The Formulae 28 agree with the preliminary 
estimate Equation 10. Under different conditions 
the direction of the flow may either coincide with 
the electrolyte flow direction or be opposite to it. 
The velocity of the gas flow may also change sign 
so that the flow in different cross-sections of the 
electrode will be in opposite directions. In the 
next section we shall discuss the gas flow in more 
detail with reference to the hydrogen cell with a 
capillary membrane. 

3. Mass transfer in a cell with capillary membrane 

3.1. Convect ive  f l o w s  

Consider a hydrogen-oxygen cell consisting of two 
porous electrodes separated by a porous membrane 
(Figs. 1 and 2). Equations of the reactions taking 
place at both electrodes are 

1/2H20 + OH- = H20 + e-, (29) 

1/402 + 1/2H20 + e- = OH-. 

The reactants (hydrogen and oxygen) are supplied 
through the outer faces of the corresponding 
electrodes; the reaction product (water) can be 
removed in the form of vapour on either side of 
the cell; 'through-transfer' of water across the cell 
is also possible if some additional amount of 
vapour is supplied to one electrode and removed 
from another. 
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Fig. 1. Schematic presentation of hydrogen-oxygen fuel 
cell with capillary membrane and partially flooded elec- 
trodes. 

Each electrode can be considered separately as 
in the preceding section. The system as a whole 
can be described by the Equations 1-6 and 13, if 
we index the parameters and the kinetic function 
Q in these equations (i = 0, 1,2,  for the mem- 
brane, anode and cathode, respectively). Since the 
membrane contains no gas phase and there is no 
electrochemical reaction here, Equations 1-3 with 
Q = 0, q = 0 are sufficient to describe it. 

Let us investigate the values and the directions 
of  the convective flows in the cell when the con- 

9' 

0 e. e, 6 _ e ,  

8 
8 '  

V 

t o 2 

.._z 

Fig. 2. Diagram of the potential distribution in the fuel 
cell. (0) membrane; (1) hydrogen electrode; (2) oxygen 
electrode. (A) electrolyte potential; (B) electrodes poten- 
tials in the operating cell and (B') in the disconnected cell. 

centrations of  reagents in each electrode can be 
assumed constant. The electrolyte flow velocities 
in the electrodes are given by Equation 21. The 
electrolyte flow rate in the membrane is directly 
related to the water flux from the hydrogen to the 
oxygen electrode: 

ear 
v = (30) 

cwF 

When there is no through-transfer of  water across 
the cell, the stoichiometric amount of  water is 
transferred from the hydrogen to the oxygen elec- 
trode and enters into the reaction, while the excess 
water is vaporized from the outer boundary of  
the hydrogen electrode. In this case c~ = 1/2. If  the 
water vapour is additionally supplied to the oxy- 
gen electrode, a decreases and may even become 
negative. Since (Section 2.3) in both electrodes, 
liquid flows parallel to the potential gradient, in 
the usual situation (~ > 0) the directions of  
electrolyte flow in the membrane and electrodes 
are opposite to one another. The formulae for the 
flow velocity in the gas phase were already derived 
in the preceding section. These must be rewritten 
here for specific values of  the stoichiometric co- 
efficients for the fuel cell, ( ~  = - 1/2, u~ = 1, 
v~ = -- 1/4, v~ = -- 1/2) and the direction chosen 
for the x axis (from the hydrogen to the oxygen 
electrode, as shown in Fig. 2). Equation 23 and 
boundary condition 26 for the hydrogen electrode 
(anode) take the form 

d 
~ - ( V e w + u C g )  = 1/2Q1 (O<~x<~ll) (31) 

yew + uCg = (o~ - 1/2)I/F (x = 0). (32) 

Hence 

v~ w + uCg = F- l {  - 1 /2[ I - -  i(x)] +our} 

(O<~x<~l,). (33) 

The gas flow velocities at the outer and polarized 
boundaries of  the electrode are equal to 

u(O) = I ( a - -  1/2)., u( l l )  - I(c~ + Xl) , (34) 
FCg FCg 

where X1 = D§ + + D-)e(O).  Correspond- 
ing formulae for the oxygen electrode are: 

d 
~ ( V C w + u C g )  = 3/4Q2 (12<~x<~13), (35) 
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vc w + uCg = (~ --  3 /4 ) I /F ,  (x = 13), (36) 

vcw + uCg = F - l {  - 3 / 4 [ I - -  i(x)] + oa r} 

(12 <~ x <~ 13), (37) 

I I 
u(13) = ~ f i - ( ~ - - 3 / 4 ) ,  u(12) = ~fi-(o~ + X2), 

. , . . g  
(38) 

where X2 = D+cw(l?)/( D+ + D-)e(13).  The gas flow 
rates in the hydrogen and oxygen electrodes are 
schematically shown in Fig. 3. For c~ > 1/2 the gas 
in the hydrogen electrode flows towards the mem- 
brane in a direction opposite to the electrolyte 
flow. For 1/2 > ~ > --  Xl the flow near the mem- 
brane retains its direction, but  becomes outward- 
directed near the outer boundary.  Finally, when a 
considerable amount  of  vapour is supplied from 
the oxygen electrode (a <~ - X I ) ,  in all electrode 

cross-sections the gas flows towards the outer 
boundary.  For 3/4 > ~ > --  X2 (and, in particular, 
in the stoichiometric case ~ = 1/2) in the oxygen 
electrode, the gas flows both from the outer 
boundary and from the membrane into the elec- 

trode. For c~ < --  X2 the gas flows towards the 
membrane,  and for ~ >~ 3/4 it flows towards the 
outer boundary.  These results are valid also for the 

hydrogen-oxygen  electrolyser if the signs of  all 

flows are reversed. 

3.2. Concentrat ion and potent ia l  distr ibution in 

the membrane  

_ [ L  ' 

c 
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Fig. 3. Distribution of flow velocities in the gas phase 
(scheme): (a) a > 3/4; (b) 3/4 > ~ > 1/2; (c) 1/2 > a > 
- - •  ( d )  a < - - •  

for dilute solutions), and integrating Equation 40 

we obtain 

- - -  (41) c = 1 +  e x p [  FewD J ~ ' 

where D* = 2D+D-/(D + + D- ) .  If  the membrane 

thickness 6 = 12 --  11 si much larger than the elec- 
trode thickness, then the major bulk of  the electro- 

lyte is contained in the membrane .  The unknown 
concentration c~ at the hydrogen electrode can 
then be found from the condit ion of constant total  

amount  of  alkali in the cell 

Since Q = 0 in the membrane,  Equation 2 can be 
integrated which yields the formula for the 
hydroxyl  flux: 

de dq~ I 
J -  = --  O -  d_x + vc + O-C dx F "  (39) 

1X'2 6 z c (x )  dx = Co (42) 

where Co is the initial concentration at zero cur- 
rent. Substituting Equation 41 into Equation 42 
and integrating we obtain 

Multiplying Equation 1 by D -  and Equation 39 
by D § and summing them up we obtain, using 
Equation 30, an equation for the alkali concen- 

tration in the membrane,  

1 c(__+X__l(eS ~ 1) X 1. (43) 
~y \Co O~] o~ 

Here we have introduced dimensionless para- 

meters  X = t+cw/co, Y = I6 /FD*cw.  From Equation 
d c  43 we obtai t e concentrations at thehydro en 
dx 2FD ~ (40) - a n d  oxygen electrodes ca and e2: 

Cl Y ( ~ + X )  X c2 Y ( a + X )  X 
where t + = D+/(D + + D- ) .  Neglecting both the - ey ~ , . (44) 
dependence of  the diffusion coefficients on the Co --  1 ~ Co 1 --  e -ya 

concentration and variations of  water concen- The dependence of  the concentrations c 1 and c2 
tration (strictly speaking, this can be done only on the pa rame te ry  (proport ional  to current) for 
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Fig. 4. Electrolyte concentrations at the membrane boundaries as functions of dimensionless current density for different 
values of the parameters c~; X = 1. 

X = 1 and for different values o f  ct is p lo t ted  in 
Fig. 4. 

For  a > --  X the concentrat ion at the hydrogen 
electrode diminishes and that  at the oxygen elec- 
t rode increases with increasing current; the higher 
the value of  ~, the greater is the effect. At a cer- 

tain value of  current the concentration at the 
hydrogen electrode becomes zero. This current is 

limiting for this system. It is characteristic that  the 

current l imitat ion is independent  of  the electrode 
reaction kinetics and depends, most of  all, on the 
nature of  convective flows in the membrane.  The 
water vapour inflow from the oxygen electrode 
reduces ~ and thus helps to attain higher values of  
current. For  a = --  X the concentrat ion through- 
out the cell becomes constant and the limiting 
current becomes infinite. Finally, when the 

amount  of  vapour supplied from the oxygen elec- 
trode is so large that  ~ < - -  X, the concentrat ion at 
the oxygen electrode goes below that  at the hydro-  
gen electrode, and any further reduction in 
again decreases the limiting current. 

The potent ial  drop across the membrane can be 
found by integrating Equation 1 

yo~ lnC2 . (45) 
A r  - 2 t  + c 1  

5" 

4" 

3 

J 2 

t 

o 

--t e/z 

I = 

2 
Y 

Fig. 5. Potential difference in the membrane as function 
of dimensionless current for different values of the para- 
meter a (• = 1, t* = 0.2). 

The value of  Aq~ steeply increases as the current 
reaches its limiting value. The potential  drop 
across the membrane decreases with decreasing 
current (Fig. 5). 

These results are only qualitative since in actual 
processes, conducted with highly concentrated 
solutions, variation of  the diffusion coefficients 
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and of the water concentration across the mem- 
brane cannot be ignored. With variable ew, D + and 
D-, Equation 40 can be solved in quadratures, and 
the concentrations Cl and c2 can be found by 
nomograms [8], taking into account Equation 42. 
This does not change the qualitative behaviour of 
the above dependences. Accurate calculations with 
due regard for the concentration variation in the 
electrodes will be given in the next section. Calcu- 
lations of the concentration and potential 
gradients in the membrane were reported earlier 
[8, 10-121. 

For the usual values of the parameters the limit- 
ing current is about 10-1A cm 2. Slightly higher 
currents and concentration gradients lower than 
the calculated values are observed in the experi; 
ments. It was explained [5, 9] by the presence of 
small gas inclusions in the membrane through 
which water transfer is supposed to proceed, 
accompanied, as is the case for the electrode, by 
successive evaporation and condensation. Intensi- 
fication of the water transfer does not require that 
these gas inclusions form a connected system. If 
a correction is introduced to account for the water 
transfer via gas inclusions, then results are in good 
agreement with the experimental data [5, 9] (see 
Fig. 6). 

4. Steady-state regimes of hydrogen-oxygen fuel 
cell 

4.1 .  T r a n s f o r m a t i o n  o f  e q u a t i o n s  

In order to calculate the characteristics of a cell 
with thick electrodes, and high currents, when the 
concentration constancy condition is not satisfied, 
we have to solve the system of Equations 1 -6  and 
13 which can be transformed into a more con- 
ventent form by using the linear relationships 
between the flows of water, hydroxyl and gas 
reagent. Summing Equations 3 and 5 we obtain an 
equation for the water flux 

dJw d (  ~_~)  
d x  - VCw + p w u -  D e = uWQ. (46) 

From Equations 2, 4 and 46 we obtain a linear 
relationship between the fluxes 

uwJ - -- u-dw = const; Ugjw _ ~wyg = const. 

(47) 

"~" f 4r 

.6 /2 Ca 

b_. , I i 

o q t  o,2 

Fig. 6. Dependence of experimental (dotted) and calcu- 
lated (solid curves) data on the electrolyte concentration 
difference in the membrane [11 ]. 

To write these linear equations in an explicit 
form we shall use the values of fluxes at the outer 
boundaries of the cell (x = 0, x = la) and the 
stoichiometric coefficients for hydroxyl (u[), 
water (u~) and gas reactant (up) in the hydrogen 
and oxygen electrode, as listed in the table below. 

E l e c t r o d e  H 2 0 2 

i 1 2 

v i - -1  + 1 
v w + 1 - ~  
pg  - -  1 --3 

F 
7.r~ o o 

Fj~ 
7 i <~-1  <~-~  

F+~ + } - ~  

Thus we obtain for the hydrogen electrode: 

= (O~-- l ) / - J w ;  Jg 
ot I j -  
2 F  

and for the oxygen electrode 

= (2c~ -- 1) / - 2Jw; dg j -  

1 / 2 Y w  (48) 

+ 1 / 2 ~ .  
2 F  

~9) 
Using Equations 4 and 46 we can express the gas 
and electrolyte flow velocities via the fluxes Jg, Jw. 
Using the constancy condition for the total con- 
centration in the gas phase Equation 13, as well as 
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the equilibrium relation between the vapour pres- 
sure and the electrolyte concentration Equation 6, 
and introducing the notation fc = dPw/dc, we 
obtain 

1 Jg -- Dgfc -~ , (50) 
u - Cg--pw 

P w jg+ C;wDgfe dc VCw = Jw Cg--pw Cg -~.  (51) 

Substituting Equation 51 into Equation 1 and into 
the formula for the hydroxyl  flux, expressing J -  
and Jg via the water flux Jw by means of the linear 
relationships 48 and 49 and solving Equations I 
and 2 for the derivatives dc/dx, dC/dx, we obtain 
the system of  equations for computations: 

(i, dc ~b(i ) dq~ ~2 dJW 
~ o ' ~ =  q~i); o dx - c '  dx 

_ v - ~ Q ( i )  

(52) 
where 

qb(oi) = 2D- +D~.g fe (53) 
x 1-pw/Cg 

| 1%-pw/--z]Jw 
X Cg-PwJ  

[ pw : ]_, 
+ 1--a 2-XCg--PwJF' (54) 

cI'(12) = [ 2 + I c g - - P w  J 

pw]I 
+ 1 -- 2a + 2X C~--pw[-F' (55) 

cb(z,) = [ l + 2t + Cg - pw/2 
[ g Cg --Pw 

1 - -  t+Dg fc ]] 
-- I + - -  X D-I--Pw/Cg Jw /] 

- ( 1 -~ )  1+ -x 5 = l - p w / q  

- I 

+ -- (56) 
X 2 F '  

q~(2 2) = [ 1 --_2t+ Cg - 3/2pw 

x -;w i .  

- 2  1+ ~ - ~ l - p w / C  Jw 

t - -  2t + ap w 

+ 2X Cg--pw 

- ( 1 - - 2 a )  ( l q  1 - - t+Dg f e  .tl / 
X D- l -pw/Cg] jF"  

(57) 

The set of equations for the membrane (subscript 
i = 0) can also be written in the form (52) with the 
functions 

q~(o ~ = 2D-; (b(o ~ = 1+~ 
X 

1 - -  2t + 
�9 (2 ~ = -- 1 + a (58) 

X 

and Q(O) = 0. The rate of the electrode reactions is 
described by the kinetic functions Qo), Q(2) which 
depend on the over-voltage at the active surface. If 
the solution potential in the disconnected cell is 
used as the reference point for the potential ~, 
then the over-voltage at the hydrogen electrode is 
- $, and that at the oxygen electrode is AV + q~, 
where AV is the total cell polarization, i.e. the 
difference between the e.m.f. E and the voltage 
across the operating cell V (see Fig. 2). In the 
simplest case of  linear dependence of  the electro- 
chemical reaction rate on potential, the kinetic 
functions Q(1) and Q(2) take the form 

Q(1) = _kl~b; Q(2) = k2(AV+ ~b). (59) 

To solve the set of  equations (52) we must im- 
pose four boundary conditions (one more 
additional condition is required to determine the 
value AV). Water fluxes at the outer boundaries of  
the cell and at the membrane can be used as these 
boundary conditions; 

Jw(O) = (a-1)I /F;  Jw(/1) = aI/F; 

Jw(/3) = (a -- �89 (60) 

and the condition of  the constant amount of  alkali 
in the cell; 

co dx + c dx + dx const 0 C C = 

= Co [(/2 - -  11) + 6Oo(/3 -- 12 + l l)] ,  (61) 

where COo, Co are the initial moisture content and 
alkali concentration in the disconnected cell. The 
above theory is applicable also to the electrolyser 
provided we use appropriate kinetic relationships 
and stoichiometric coefficients. 
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4.2. Cell characteristics for fixed moisture content 

The system of  equations (52) with the boundary 
conditions (60), (61) was solved with the help of  a 
computer [12]. Current density I, average electro- 
lyte concentration Co, thickness o f  hydrogen, 
oxygen electrodes and membrane (61 = 11; 6 o = 
12 - - l l ;  62 = la --12), temperature T, external 
pressure II, and the parameter ~ determined by the 
outward water flows were taken as the parameters. 
The following set of  parameters was used as the 
basic set for calculation: I = 0-1 A cm -2 , Co = 10 -2 
molcm -a, 61 = 52 = 0.03 cm, 6o = 0"05 cm; 
T =  90~ II = 1 arm, a = 0.5. In all computations 
we started with the basic set and varied one para- 
meter while the others were kept constant. 

The following values of  the parameters were 
also assumed: kl = 100 s -1, k :  = 1 s-l ;  liquid con- 

tent in the electrodes co = 0"5; diffusion retard- 
ation factors ega = e2 g =ell  = e~ = 0"1 in the elec- 
trodes and el0 = 0"33 in the membrane. 

Dependences of  the solution density, ion 
transport coefficients, water and electrolyte activi- 
ties and the saturated vapour pressure on the 
electrolyte concentration and on temperature 
[13-15]  were used in the calculations. Figs. 7 and 

8 show the distributions of  dimensionless concen- 
tration and potential across the cell, calculated for 
Co = 7 tool/1-1 and ~ = 1[2. It is observed that the 
concentration Ac and potential Aq~ gradients 
increase with I. As the current approaches its limit- 
ing value, concentration gradients at the electrodes 
also become appreciable. Corresponding gradients 
in the electrodes are much lower than those in the 
membrane which shows the effectiveness of  the 
concentration equalization due to water transfer 
via the gas phase. 

Concentration gradients at the hydrogen elec- 
trode are lower than those at the oxygen electrode 
due to the higher diffusion rate of  hydrogen. It is 
typical that the electrolyte concentration at the 
hydrogen electrode passes through a minimum. 
This is caused by different directions of  water 
fluxes in different parts o f  the hydrogen electrode. 
For ~ = 1/2 water is transferred from the centre of  
the hydrogen electrode towards its outer boundary 
and also to the membrane; as water is mostly 
transported via the gas phase, the water concen- 
tration must diminish in these directions while the 
electrolyte concentration must rise accordingly. 
Minimum concentration is located close to the 
membrane surface. Since the reaction at the 

2 
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Figs,~7: and. 8,,Concentration and potential distributions over the, ceil,thickness: (1)t~= 0.1; (2t,I ~ 0.25; (3) I = 0.4; (4) I = 
0.55 A cm -2. 
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Fig. 9. Concentration distribution across 
the cell (scheme): 

(a) a > Cg --Pw/2 ," 

Cg -Pw 

. .  Cg - p w / 2  P w  ; 
(b~ ~ >c~>1/2 C g - p ~  

(c) 1/2 Pw > c~ > - •  
Cg -- Pw 

(d) ~ < -- x. 

hydrogen electrode is quite fast, the reaction zone is 
located close to the membrane where polarization 
is a minimum. Water flows out in different direc- 
tions from the reaction zone, so that the concen- 
tration minimum is located within this zone. 

Substituting the expressions for water fluxes at 
the hydrogen electrode boundaries into the func- 
tion, Equation 54, we can easily see that the 
electrolyte concentration minimum inside the 
hydrogen electrode exists within the range of  a 
variation, from -- X to (Cg -- p w / 2 ) / ( C g  - -  Pw). This 
last value exceeds unity so that the steady increase 
of  electrolyte concentration from the outer bound- 
ary of  the hydrogen electrode towards the mem- 
brane is only possible in non-real cases when not 
only all reaction-produced water is removed from 
the oxygen electrode (this corresponds to a = 1) 
but also there is a through-flow of water vapour 
from the hydrogen to the oxygen electrode. 
Steady reduction of  concentration is possible if 
a ~< --X, i.e. when there is a sufficiently strong 
through-flow of water from the oxygen to the 
hydrogen electrode. As shown in the preceding 
section, the electrolyte concentration in the mem- 
brane under these conditions also diminishes from 
the hydrogen to oxygen electrode. Similar investi- 
gation of  the function, Equation 55 shows that the 
electrolyte concentration in the oxygen electrode 
steadily increases when a ~> 1/2 -- p w / ( C g  - -  Pw) in 
the direction from the membrane to the outer 

boundary, passes through a minimum when 

- X < a < 1 /2  - -  p w / ( C g  - Pw), and decreases 
when a ~< --X. Concentration distribution in the 
cell for various values of  a is schematically shown 
in Fig. 9. 

The distribution of  the electrolyte and gas flow 
velocities remains qualitatively the same as in the 
case of  constant concentration discussed in the 
preceding section (see Fig. 3). Quantitative depen- 
dences for the current densities I = 0.1 A cm -2 and 
0"25 Acm -2 are shown in Fig. 10 for a = 1/2. The 
distribution of  dimensionless values v' = V F c w / I  

and u'  = u F C g / I  varies only slightly as the current 
increases; thus the absolute values of  velocities in 
both phases rise approximately proportional to the 
current. 

Figs. 1 1 - 2 4  show the calculated dependences 
ofc j ,  q~, AV, W =  A V +  2xE = E o  -- V o n  the 
following parameters: I, Co, 60, 61, 6z ?. The value 
AV characterizes the total potentia ! drop in the 
cell. Fig. 11 shows that the potential drop in the 
membrane (qh --q~2) and the value AV increase as 
a decreases, i.e. as water transport from the 
oxygen to the hydrogen electrode is intensified. 
This can be explained by the fact that a reduction 
in the diffusion component of  the hydroxyl flux 
(this happens when a decreases) is accompanied by 

? Numbers 0, 1, 2, 3 on the curves show that the corres- 
ponding potentials and concentrations refer to the points 
x = 0, x = 11, x = l~, x = 13 (see Fig. 2). 
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Fig. 10. Distribution of dimensionless velocities in the 
electrolyte v' = vFco/l and gas u' = uFCg/I across the 
cell. Solid curves: I = 0.1, dotted curves: I = 0.25 
A c m  -2. 
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an increase in its migration component ,  since their 
sum, equal to the total hydroxyl  flux, in independ- 
ent of  a. 

It may appear that an increase in AV due to a 
decrease in c~ during the intensification of  mass 

transfer in the fuel cell must result in reduced 
voltage across this element V = E --  A V. This, 

however, is not the case since not only A V b u t  

also the e.m.f. E of  the cell depend on component  
concentrations. The change in the e.m.f, aXE = 

E0 --  E corresponds to the voltage of  the concen- 
tration cell connected opposite to the chemical 
cell. This can be calculated by the usual thermo- 
dynamical formulae, using average concentrations 
of  the electrolyte at the hydrogen and oxygen 
electrodes, (this is justified by negligible variations 
of  these concentrations).  

After this correction is introduced we find that 
due to increased transfer of  water from the hydro- 
gen to the oxygen electrode the cell voltage rises 
despite an increase in the cell polarization aXV. 
Figs. 13, 15 and 21 show that the sum aXV + aXE 
increases with the current and the membrane 
thickness 6o and is practically independent  of  Co. 

7 

~ ' , . .  c (g~) 

O s ~  

O,6 

I I I 

i r o -r 
ol. 
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Figs. 11 and 12. Potentials and concentrations as functions of the parameter c~. 
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Figs. 17 and 18. Potentials and concentrations as functions of the hydrogen electrode thickness. 

I 

,oos ej 

0 i ] 
t' 2 5 

$~. "/O~ fc,,,) 

~o 

I I 
~ 2 3 

Figs. 19 and 20. Potentials and concentrations as functions of the oxygen electrode thickness. 
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Figs. 21 and 22. Potentials and concentrations as functions of the initial electrolyte concentration. 

Fig. 22 demonstrates that the increase in the 
average concentration Co results in an increased 
concentration gradient mostly due to the concen- 
tration-induced reduction o f D  + and D-. The rise 
in 80 and I results in almost proportional increase 
in both the concentration gradient and AV (Figs. 
13-16).  It is seen in Fig. 11 that reduction of a 
leads to a proportional increase in AV practically 
only at the expense of the membrane, since the 
potential field in the electrodes remains virtually 
unchanged. 

Figs. 17 and 18 show the almost complete non- 
dependence of all characteristics on the thickness 
81 of the hydrogen electrode; this is due to the 

fact that the characteristic depth of reaction pene- 
tration into the hydrogen electrode is much 
smaller than its thickness because of the high value 
of kl .  The penetration depth in the oxygen elec- 
trode is by an order of magnitude higher, so that it 
is commensurable with the electrode thickness 82. 
Therefore, the increase of 82 increases the concen- 
tration (c3 -- c2) and thepotential (~2 -- ~3) drops 
and reduces AV due to the decreased polarization 
of the oxygen electrode (Figs. 19 and 20). 

As can be seen in Figs. 23 and 24, the concen- 
tration and potential gradients in the cell decrease 
with increasing temperature, as a result of more 
intensive transport due to increased water vapour 

! 
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Figs. 23 and 24. Potentials and concentrations as functions of temperature. 
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Fig. 25. Concentration distribution across the cell for 
different current densities (/3 = 1, co o -- 0.6). 

pressure. Calculations also show that the potential 
and concentration distributions remain practically 
unchanged as the total pressure varies in the range 
from 0"5 to 3 atm. 

4.3. Problems of  self-regulation of a fuel cell 

This section continues the investigation of the 
problems of the self-regulation of the supply and 

removal of water vapour which was initiated in 
earlier papers [5, 16, 17]. 

In the operation of a fuel cell the water vapour 
pressure in the gas chamber near the hydrogen 
electrode is usually constantly maintained. When 
water vapour is supplied from the oxygen elect 
trode, the constant water vapour pressure is main- 
tained in two gas chambers near each electrode. In 
both cases the liquid content in the electrodes is so 
adjusted during the cell operation that the evol- 
ution of water due to the reaction is compensated 
by its removal, so that the cell operates in a steady 
state. If the moisture exchange is unidirectional, 
i.e. proceeds from the hydrogen electrode only, 
then c~ = 1/2 always. With the bi-directional mois- 
ture exchange, when vaporization and conden- 
sation proceed at the outer boundaries of both 
electrodes, there is an additional flow of water 
through the cell; this flow corresponds to the 
steady-state process at given pressures of water 
vapour in both gas chambers. Both the liquid con- 
tent and the water flux change as the current 
varies. Since current generation is not possible at 
excessive drying nor, on the contrary, at flooding 
of the electrodes, a problem of practical interest is 
how wide is the current range in which the steady- 
state operation of the cell is still possible with 
liquid contents remaining within acceptable limits. 

The increased current increases the electrolyte 
concentration gradient (mostly due to an increased 
concentration gradient in the membrane). At 
a = 1/2, when the water exchange takes place only 

Oi i i 
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Figs. 26 and 27 Liquid content as function of  current for different values of  the mass transfer coefficient/3. 
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at the hydrogen electrode, the electrolyte concen- 
tration at the hydrogen electrode decreases as the 
current increases; correspondingly, both the 
sat~lrated vapour pressure and the water removal 
rate also increase. Thus the cell exhibits self- 
regulatory characteristics; the faster the evolution 
of  water, the faster is its removal [16]. This self- 
regulation is, however, not ideal. For a small 
coefficient of  mass transfer from the electrode 
surface to the gas chamber the intensification of  
water removal due to the increased concentration 
gradient is not sufficient to compensate for the 
intensified water evolution, so that the cell is 
flooded as the current increases. This flooding de- 
creases the electrolyte concentration and thus is 
conducive to the intensification of  water removal. 
However, the steady-state moisture content 
gradually increases as the current rises, and finally 
exceeds the acceptable limiting level. At a high 
mass transfer coefficient we must observe a 
reversed situation: a small increase in the concen- 
tration gradient will lead to such a considerable 
intensification of  water removal that the electrodes 
will gradually dry up as the current increases. As 
was shown by Volfkovich et al. [17] the most 
effective self-regulation must be expected at cer- 
tain intermediate values of  the mass trans co- 
efficient. 

An additional possibility of  self-regulation not 
only of  the liquid content but also of  the water 
flux, and hence of  the concentration gradient in 
the cell, appears in the systems with bi-directional 
water exchange. In the usual case, when the 
electrolyte concentration decrease in the direction 
from the oxygen towards the hydrogen electrode, 
the increased concentration difference, produced 
by the rise of  current, results in intensified water 
transfer from the oxygen gas chamber to the oxy- 
gen electrode, and from the hydrogen electrode to 
the hydrogen gas chamber; therefore, the para- 
meter c~ decreases. However, smaller c~ values 
correspond to lower concentration gradients; 
therefore, these gradients are affected by the 
current increase much less than in the case of  uni- 
directional moisture exchange. The current 
increase both in the bi-directional and unidirec- 
tional moisture exchanges can lead under different 
conditions to drying and also flooding of  the 
electrodes. As the difference between water vapour 
pressures in both gas chambers decreases, the  range 

of  the most effective self-regulation shifts towards 
higher values of  the mass transfer coefficients. To 
solve quantitatively the problem of the external 
water transfer self-regulation we have to integrate 
the system of Equations 52 with the additional 
boundary conditions which make it possible to 
calculate the values of  co and ~. The balance of  
water fluxes at the outer boundaries of  the hydro- 
gen and oxygen electrodes, with due regard for the 
Stefan flow of  the vapour-gas mixture, gives the 
boundary conditions 

I ~ I G  In 1 -- 3"lpw/C~ (62) 
1 )  = 3"1 1 - 

I j32Cgln 1 -- ~2p(w2)/Cg 
(c~-- 1/2) ~ = 3'2 1 -- 3"2Pw/Cg" (63) 

Here ~1 and/32 are mass transfer coefficients from 
the hydrogen and oxygen electrodes, respectively, 

- ( 1 )  and Pw and p~) are water vapour pressures in the 
respective gas chambers. The values on the left- 
hand sides of  Equations 62 and 63 represent the 
water fluxes at the outer boundaries of  the hydro- 
gen and oxygen electrodes which correspond to 
the steady-state process at a given current density 
I and at certain values of  the parameter c~. 

The right-hand sides of  these equations contain 
the expressions for the water transfer rate from 
the electrode surface to the bulk o f  the gas 
chamber under Stefan flow [18]. Coefficients 3'1 
and 3'2 are equal to the number of  moles of  the 
gas mixture transferred with one mole of  water. 
According to the stoichiometry of  the electrode 
reactions: 

c~ -- 1/2. c~-  3/4 (64) 
3'1 = c~--I  ' 72 c ~ - 1 / 2 "  

The cell characteristics for unidirectional 
moisture transfer are obtained from Equation 52 
under the boundary conditions 60 -62 .  In this 
case a = 1/2, and the additional boundary con- 
dition, 62, serves to determine the moisture con- 
tent in the electrodes co. Since at a = 1/2 we have 
71 = 0, in this case this boundary condition re- 
duces to 

1/2F = t 3 1 ( P w - - p ~ ) ) .  (65) 

To find the value of  ~ another boundary con- 
dition, 63, is required for bi-directional water ex- 
change. 

Some results of  calculations for o~ = 1/2 are 
plotted in Figs. 25 -28 .  In these calculations we 
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Fig. 28. Liquid content as function of current density at various initial electrolyte concentrations. 

took into account the dependence of  the effective 
diffusion coefficients in the liquid and gas phases 
on the liquid content [Dg ~ (1 -- co)2;D-+ ~ 602]. 
The kinetics of  the electrode reactions hardly 
affects water transfer in the cell (which play de- 
cisive roles in the problem of self-regulation). Thus 
in calculations we can assume that evolution of  
water is either located at a small segment of  the 
electrode or is uniformly distributed throughout 
the whole bulk of  the electrode. The difference 
between these two versions is revealed only in 
some modification of  the electrolyte concentration 
distribution in the electrodes. Since the concen- 
tration difference in the electrodes is much lower 
than that in the membrane, these small changes 
practically do not affect the calculated value of  the 
moisture content. 

Fig. 25 shows the variation of  the concentration 
distribution in the cell with the current. The 
qualitative characteristics of  the distribution, dis- 
cussed above in 4.2., remain unchanged despite the 
fact that, in contrast to the foregoing results, 
variation of  current is accompanied by changes in 
the electrode liquid content in this case. Figs. 26 
and 27 show the character of  the current-induced 
liquid content variation for various values of  the 
mass transfer coefficient/3. Both figures differ in 
the initial liquid content of  the electrodes (or, in 
other words, in the total amount of  alkali in the 
cell). The results of  the calculations corroborate 

the results that the cell is flooded at low mass 
transfer coefficients and that it dries at high values 
of  these coefficients when the current is increased 
[17]. The curve in Fig. 27, corresponding to 
/3 = 1 cm s -1, is of  special interest. Here. an increase 
in current first reduces and then increases the 
liquid content. Non-monotonous behaviour of  co, 
Equation 1, is really observed at intermediate 
values of  the mass transfer coefficient optimal 
from the standpoint of  self-regulation; this leads to 
widening of  the current range in which the fuel cell 
operation is stable. Fig. 28 illustrates a certain 
deterioration in the self-regulation characteristics 
when the initial alkali concentration is increased as 
revealed by a rapid drying of  the cell with increas- 
ing current. Calculations by this method enable us 
to estimate in a similar way the effects of  various 
parameters, determining both the dependence of  
the design and the operation mode of  a fuel cell, 
on its self-regulation characteristics. The calcula- 
tion principles are applicable both to a fuel cell 
and to an electrolyser in which water is supplied 
and removed as vapour. 
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